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Abstract: The Semantic Web is an emerging technology which aims at making data across the globe semantically 

connected. The data is represented in a very simple statement like construct having a subject, predicate and an 

object. This can be visualized as a graph with the subject and the object as nodes and the predicate as an edge 

connecting the two nodes. When many statements like these are collected together they forms an RDF graph. 

There are RDF query languages to query such data, and SPARQL is one of them. According to the SP
2
 Bench 

performance benchmarks, the SPARQL queries are very slow for RDF data with millions of triples. Hence, we aim 

to develop a Implementation of query System on hadoop using Map reduce technique and RDF Data model of 

parallelization and hypothesize that this system will outperform the scalability and performance reported by the 

SP
2
 Bench. We extend ARQ, an open source SPARQL query engine provided by the Jena framework, to work 

with the Hadoop Map Reduce framework and implement distributed SPARQL query processing. This thesis 

provides the detailed implementation and algorithmic details of our work. We contribute two novel methods to 

optimize RDF query engine which exploits document indexes and a join pre-processing technique. The 

experimental results show the merits and demerits of using Map Reduce for distributed RDF query processing and 

provides us a clear path for future work. 

Keywords: Hadoop framework, Cassandra key-value, RDF Dataset, MapReduce, SPARQL, Jena framework, 

Turtle, RDFa, Triplestore, Quadstore. HDFS, N-Triples, SP
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I.   INTRODUCTION 

The world wide web, in its current form, presents data in a way that is understandable and consumable by human users. 

The same level of semantic understanding is not yet a capability of machines. A computer program can read a web page 

and understand its formatting and layout, but cannot easily extract greater meaning from its content. As the web grows to 

encompass large portions of human knowledge, and vast amounts of data, the individual user is limited in their search for 

information simply by the overwhelming amount accessible. Machines can help today through the use of search engines, 

but even the most advanced engines available must use sophisticated data mining and interpretation processes to make 

even a modest attempt at lifting semantic meaning from data that does not explicitly express this. The goal of the semantic 

web is to alleviate this issue by more directly including machine processable semantics into the data of the web. With this 

data present, machines can assist human queries by inferring information for them from stores of data too large to search 

and process manually. 

The Resource Description Framework (RDF) [3] is a family of standards and specifications developed by the World Wide 

Web Consortium (W3C) to support the notion of a semantic web. Through these specifications RDF details a way to 

make statements about resources such that a machine could understand them. The primary mechanism for doing so in the 

RDF data model is through the use of a triple, (S; P; O), consisting of a subject, a predicate, and an object. In this way 

statements can be made about the properties of a subject, and the values of those properties. For example one could 
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express that Aristotle (the subject) was influenced by (the predicate) Plato (the object). These triples form a labeled 

directed multi graph with a single subject having potentially many predicates, and any given object also acting potentially 

as the subject of other statements. 

The mere presence of appropriate RDF data does not, however, enable the semantic web. This data must be able to be 

queried in such a way as to allow for complex searches and inferences to be made. SPARQL is a declarative query 

language for RDF that bears some syntactic resemblance to SQL. A SPARQL query in its most simple form consists of a 

SELECT and a     WHERE clause. The WHERE clause contains what is referred to as a Basic Graph Pattern (BGP). A 

BGP is a set of triple patterns which are very similar to the data triples described above, with the addition of the allowance 

for variables. In SPARQL a variable is a name proceeded by a question mark, as in ?varName. An example SPARQL 

query for finding all people that Aristotle was influenced by and in turn influenced him, appears in figure 1 

 

SELECT? Influncer 

Where 

{ 

<http://dbpedia.org/resource/Aristotle> <http://dbpedia.org/ontology/influencedBy> ?influencer. 

 

?influencer<http://dbpedia.org/ontology/influencedBy><http://dbpedia.org/resource/Aristotle>  

} 

 

Figure 1: A simple SPARQL query for finding both the people that Aristotle influenced and those who he was influenced by 

The text denoting “Aristotle" and “influencedBy" are IRI's, which are generalizations of Uniform Resource Identifiers 

(URI) A URI is in turn a generalization of the familiar URL, with the loosening of the restriction requiring the identifier 

to actually represent a locatable web resource. The verbose nature of the statement above is in practice mitigated via the 

use of prefixes to represent the base of a URI. http://dbpedia.org/resource/Aristotle could, for example, become 

dbpr:Aristotle through the use of a prefix binding “dbpr" to \http://dbpedia.org/resource/\. In general the BGPs can contain 

1 to many rows with 0 to many variables. 

Processing a BGP over a set of RDF data can take many forms. It is not uncommon to model the RDF data in a relational 

schema and process a query by either writing the query directly in SQL, or by transforming a SPARQL query to relational 

algebra as in the method described by [4]. Dedicated triplestore databases also exist for storing and querying RDF triples. 

Various hurdles exist with these and other approaches when processing large datasets. In the relational model RDF data 

must be transformed into tabular form and queries must be either specifically written for the particular schema used 

(removing portability), or must be translated from SPARQL to SQL before execution (to a lesser extent still removing 

portability as the translation engine must be aware of the relational schema in use). Triplestores present an intriguing 

option as no paradigm shift is needed between the native representation of the data, and its logical storage. These tools, 

however, are still relative new comers to the landscape and as such the features, scalability, and selection are not where 

their relational counterparts are today. In both cases (as well as a handful of other mechanisms such as key-value stores) 

the data must first be loaded into the database before processing can begin. In many situations a given data set must be 

queried, but there is no need to persist the data after the results have been returned. Even in some of the more advanced 

triple stores, loading of data sizing in the billions of triples is measured in hours [6]. 

Map-Reduce is a data processing model developed at Google for efficiently handling very large datasets using a fault 

tolerant mechanism. It is inspired by principles of functional programming, though the common map and reduce functions 

take on slightly new meanings when interpreted in the Map-Reduce paradigm. Map-Reduce allows for an input file to be 

split into many independent subprocessing steps, each of which could be handled by a separate machine (or processor, or 

core). The results of these sub-processes are then reduced back down to a single, or a set of, solutions. This framework 

allows for massive scalability, along with a simple progamming model that does not ask developers to think explicitly 

about parallelism or concurrency issues. Map-Reduce has a proven track record of efficiently handling large data queries 

and is quickly moving into main stream use within both academia and industry. The concepts be-hind Map-Reduce have 
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moved outside of Google, and take form in various implementations, the most well known being the open source 

framework Hadoop [1]. 

BGP processing via Map-Reduce holds great promise. The intrinsic scalability of Map-Reduce make it ideal for the 

potentially very large, web-scale, RDF datasets. Map-Reduce, in the general case, unfortunately does not handle join style 

operations naturally in an efficient way. Through the use of a platform called Pig [2], and its associated Pig Latin 

language, joins have been made simpler for the developer to describe, but the processing inefficiencies remain unchanged. 

Other work in this area, such as [9], has described algorithms for using Map-Reduce in an iterative fashion to process 

SPARQL queries. This defines a process for an initial Map-Reduce pass to perform selections from the data based on the 

query, and then iteratively apply a different Map-Reduce job to effectively execute join operations. [9] introduces ideas 

for reducing the number of joins required, and thus the number of iterations, but in most cases multiple joins will still be 

required. Map-Reduce iterations can be quite heavy in terms of overhead. To optimize execution time, ideally a single 

pass through Map-Reduce would be implemented. In [11] the authors introduce a new phase to Map-Reduce that they 

refer to as Merge. The new Map-Reduce-Merge paradigm is intended to allow for traditional Map-Reduce to be extended 

in such a way as to more adequately handle join style operations. While no implementation was publicly available, the 

high level concepts from Map-Reduce-Merge can be applied to SPARQL query processing. This paper details algorithms 

for handling SPARQL queries via a method similar to Map-Reduce-Merge, and presents a simple implementation of these 

algorithms. 

II.   ALGORITHM FOR BGP PROCESSING 

By applying a 4-phase algorithm to a given SPARQL query and RDF triple dataset, a single pass Map-Reduce execution 

can be achieved. This relieves the overhead of iterative Map-Reduce executions. Such overhead includes, but is not 

restricted to the need to write each potentially large intermediate data set to disk, and then read it back in. A query 

containing n variables (after any reductions have occurred) could result in up to n executions of Map-Reduce when run in 

an iterative Map-Reduce environment. Where Map-Reduce is primarily applied to problems involving large datasets, even 

the intermediate results could be measured in gigabytes thus reading and writing these data multiples times contributes in 

a non-trivial way to the overall runtime. 

The 4-phase algorithm consists of: 

1. Preprocessing Phase 

2. Map Phase 

3. Reduce Phase 

4. Merge Phase 

Preprocessing Phase: The preprocessing phase receives as input a SPARQL query, and reference to the location of the 

dataset to process. This phase involves completing 3 main tasks: 

1. Translate the SPARQL query to SPARQL algebra 

2. Compute a "minimal cover” 

3. Identify the "overlap rows” 

Task 1 involves translating the SPARQL query in text form into a representation of SPARQL algebra (here in tree form). 

SPARQL algebra is similar to relational algebra in intent, and partially in form. In the implementation created as part of 

this work, only two of the operators from SPARQL algebra are considered, BGP , and projection. The remaining 

operators remain as future work, but represent less critical components of the processing from a complexity perspective. 

Once the BGP's have been identified, they can be processed to determine results for the 2nd and 3rd tasks of the 

preprocessing stage. First what this work refers to as a minimal cover is computed. Conceptually a minimal cover is a 

subset of variables from the query that must be considered as drivers for the subsequent phases of processing. All phases 

of this algorithm have runtimes which are in part a function of the number of variables. By reducing the number of 

variables to consider, the process can be made more efficient by a substantial factor. Removing a single variable from an 
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n variable solution will cause the later 3 phases to work with a value of n 1 rather than n in M  intermediate results. Here 

M is the number of triples in the input, and is a selectivity percentage of the variables over the input. 

To perform this reduction we identify a minimal cover, being the minimal set of variables that will cover the BGP. Here 

minimal cover is defined with respect to a BGP which is interpreted as a graph whose nodes are the elements of each 

triple in the triple patterns in the BGP, and are arranged in rows corresponding to each triple pattern. A minimal cover is 

then defined as: 

 A path through the BGP such that: 

 An edge can exist between two nodes on the same row if both nodes represent a variable (of the same or different 

name). 

 An edge can exist between two nodes on different rows only if the corresponding nodes are both variables with the 

same name. 

 The path is a cover, meaning that it has at least one node on each row of the BGP. 

 Removing any element from the BGP causes it not to be a cover. 

 No shorter path holding the same properties as above exists. 

Various methods exist for finding such a minimal cover. The method selected is of little consequence to the overall 

algorithm as this step is performed only once, and typical queries will have fewer than 20 variables. 

Figure 2 depicts an example minimal cover. Here a cover can move vertically from variable ?who on the first line of the 

BGP to ?who on the 2nd line. It can then move horizontally to ?friend followed by another vertical jump to ?friend on the 

3rd line and a horizontal jump to ?influential. This is indeed a cover, but not a minimal cover as ?influential is not 

required by the definition. ?influential would thus be identified for removal as the set f?who; ?friends is sufficient as a 

cover for this BGP. 

A minimal cover may include the entire set of variables in the BGP in the case where all variables must be included to 

form a cover. Further, in some extreme cases a cover may not exist at all. In this case the result is essentially the Cartesian 

product of each variables' matches, and no reduction is possible. 

Those variables removed from the set under consideration must still be considered, but during the processing of those 

included in the minimal cover, and not in addition to. These removed variables do not contribute to the size of the 

intermediate results, and thus their impact on the overall runtime is minimal. See below, in Reduce Phase, for a 

description of how these variables are used. 

In the 3rd task of the preprocessing stage, overlap rows are identified. These are simply the rows where two or more 

variables are present on a single row in the triple patterns forming the BGP. This information is used later in the process 

when performing the join between single variable solutions. 

 

 

 

 

 

 

 

 

 

 

Figure 2: An example minimal cover, where ?influential is removed 
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Figure 3: An overview of the last 3 phases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: An example snapshot of the map phase 

Map Phase: Figure 3 depicts a high level view of the last 3 phases of the algorithm. The map phase consists of the left 

hand two boxes. Here the input data is filtered over the minimal cover defined above and output rows are sent to the next 

phase of processing. Map proceeds by checking each row of the input le and comparing it against the rows of the BGP 

from the query. A match exists for a data row and a BGP row if the subjects, predicates, and objects match, or where not 

matching is a variable. Figure 5 depicts this. 

A given data row may match 0, 1, or multiple BGP pattern rows, and thus 0, 1, or multiple output rows may be generated 

for any given input row. When a match is found a key value pair is output in the form: 

Key: (variableName; matchedValue) 

Value: (triplePatternIndex; dataRow) 
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Here triplePatternIndex corresponds to the index in the BGP of the triple pattern that matched (i.e. the 3rd row down in 

the where clause will have index 3, or 2 in a 0-based index). These key value pairs progress on to the reduce phase, and all 

other data is disregarded. 

Figure 4 depicts a snapshot of an example match phase. Here BGP pattern 1: {?who influencedBy Plato}, has matched 

[Arthur_Schopenhauer influencedBy Plato]. ?who was bound to Arthur_Schopenhauer, and the other two elements 

matched exactly. Similarly [Aristotle influenced Islamic_Philosophy] has matched the 2nd row of the BGP, {?who 

influenced ?what}. ?who was bound to Aristotle, and ?what was bound to Islamic_Philosophy. 

Reduce Phase: The reduce phase of the algorithm receives the output from the map phase, grouped such that for any 

given key an instance of the reduce operation receives that key along with all values associated with it. During the map 

phase a particular variable may have been bound to the same value for multiple different data rows. Using the query from 

Figure 4 the variable ?who may have been bound to Aristotle for the data row [Aristotle influenced Islamic_Philosophy] 

as well as the data row [Aristotle influencedBy Plato]. An instance of the reduce operartion would then receive the key 

(?Who, Aristotle) and the list of values ((0,[Aristotle influencedBy Plato]),(1,[ Aristotle influenced Islamic_Philosophy])), 

among possibly others. 

The input values will be partitioned based on the BGP row index (0, and 1 in the example above), and the possible 

combinations of values from each partition will be checked for single variable completeness. For a set of data rows to 

have the property of single variable completeness the rows will have matched all triple patterns in the BGP containing a 

particular variable, with all bindings for that variable having the same value. In the above example the variable ?who 

appears on two rows in the BGP. Since the first occurance is matched by 

 [Aristotle influencedBy Plato] and the second by [ Aristotle influenced Islamic_Philosophy], with both binding ?who to 

Aristotle, these triples form a single variable solution. Single variable solutions are output to the next phase of the 

algorithm. 

A further qualification for a single variable solution is that any other variables occurring more than once within the BGP 

rows under consideration must have the same value in all locations. For example, a variable ?x may appear on 4 rows of a 

BGP in a query. If somewhere among those 4 rows the variable ?y occurs twice, any single variable solution for ?x must 

have a consistent value for the occurrancecs of ?y. These variables include both those in the minimal-cover, and those that 

were removed. 

 

Φ subject = ψsubject  V isVariable  (ψsubject) 

Φpredicate = ψpredicate V isVariable (ψpredicate) 

Φobject = ψobject V isVariable(ψobject) 

Figure 5:- Matching in map phase 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: An example snapshot of the reduce phase 
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Figure 6 provides a snapshot of the reduce phase. Here we see that since ?who bound to Aristotle matched patterns 1 and 

2, and those are the only patterns in the BGP referencing ?who, that a single variable solution is output. Note this gure 

abbreviates the data row values as ***** to conserve space. 

At the end of the reduce phase the typical Map-Reduce job is done, and output is written to the file system. A true Map-

Reduce-Merge system may remove the requirement for a full write to disk at this stage, and could potentially even include 

a type of pipelining to allow the Merge phase to begin before Reduce has fully completed. In the implementation for this 

work, such an advanced system was not available, and the creation of one while related, was outside the immediate scope. 

Thus the implementation, to be described in section III, adds the Merge phase as a separate entity to be run after the 

completion of normal map-reduce operations complete. 

Merge Phase. At the end of the Reduce phase a sorted list of single variable solutions are output. Each single variable 

solution represents a set of data rows that would satisfy a single variable within the BGP. At least one single variable 

solution must exist for each variable in order to produce a non-empty result set. An optimization can thus be made that 

keeps a flag for each variable seen during the map phase, and if not all variables had a result when beginning the reduce 

phase, processing can stop and an empty result set returned. 

Assuming that each variable does have at least one single variable solution, the Merge phase proceeds During the 

Preprocessing phase overlap rows were determined. These are just the rows where more than one variable from the 

selected minimal cover is present. These are used here in the Merge phase as the determining factor when attempting to 

join any two single variable solutions. 

A join now occurs between the sets of single variable solutions (with each set consisting of those single variable solutions 

for the same variable). This phase can borrow significantly from the RDBMS domain in the actual implementation of the 

join algorithm. For example the reduce phase outputs the results in sorted order, and can do so based on the largest 

expected join condition, meaning the majority of the joins to occur can use a sort-merge join on pre-sorted datasets. Given 

a low selectivity rate, the sets being joined will be small at this point as filtering in previous stages has pruned the input to 

only those rows that are at least partial matches for the result. 

 

 

 

 

 

 

 

 

Figure 7: An example snapshot of the merge phase 

In Figure 7 because the two highlighted rows match the only overlap row in the query, they move to the output. Output 

rows from this phase will be exactly those that should be represented in the final result. A final step while output is 

generated is to simply project these results over any projection criteria from the SELECT clause of the query. 

III.   IMPLEMENTATION 

An implementation, MRSPARQL, was developed to demonstrate and test these algorithms. It provides a simple web 

interface allowing the user to select a dataset to work with, and input a SPARQL query. This version is restricted to 

working with queries that result in projections over basic graph patterns (BGP). The result set will be returned to the user 

and displayed in tabular form as HTML. 

Technologies: MRSPARQL is written in Java 1.6, using simple Java EE servlets and Java Server Pages (JSP) for the web 

interface. The core Map-Reduce functionality makes use of Hadoop 2.3[1]. The parsing engine makes use of ARQ [7], a 

SPARQL processing library for Jena [8], in extracting SPARQL algebra from textual Data. The data used while building 

and testing MRSPARQL comes from DBPedia [5], an extract of data in RDF formats from Wikipedia. 
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Experimental Results: To date MRSPARQL has focused on correctness, as opposed to efficiency. While the algorithm 

above was designed for efficiency, it's implementation in MRSPARQL made use of the most intuitive sub-algorithms. 

There is great room for improvement here, as is mentioned in section IV. In addition MRSPARQL has been tested on a 

single core, singe processor Intel Core i3 2.66GHz. This fact completely restricts Hadoop's ability to implement the map 

and reduce operations in a parallel or distributed manner the core of Hadoop's efficiency. Due to these facts experimental 

results have only been used to test for correctness, and to prove the viability of map-reduce-merge as a platform for 

processing SPARQL queries. Here initial test results will be brie y mentioned, but any comparisons to other systems are 

withheld pending testing on more realistic distributed systems, and using a more optimized implementation. Using an 

extract of the DBPedia "Ontology Infobox Types” dataset, which totals approximately 845 MB, and contains 6,173,940 

triples, a moderately complex SPARQL query resulted in a runtime of 35 seconds. A similar query run against the 

"Ontology Infobox Properties”  DBPedia extract which totals 1.7 GB and 13,795,664 triples had an average runtime of 79 

seconds. Here again we emphasize the results are from an un-optimized , single processor execution and are presented 

with the intent of showing the promise these algorithms hold in more appropriate environments. 

IV.   FUTURE WORK 

Future work can be broken down into three parts Algorithms, Implementation and Testing.  

Algorithm: The algorithms describes here can be extended to encompass the complete set of SPARQL algebra operators , 

allowing for a more robust system. BGP forms the core of any SPARQL query, but extending to the full operator set 

would be required for any real use system. 

Implementation: The implementation in its current form uses sub-optimal solutions to many tasks it performs while 

executing the above algorithms. Updating this to provide more efficient execution can likely decrease the runtime many 

fold. 

Testing: Given a more robust implementation, complete benchmark testing would be required. A benchmark system such 

as LUBM [10] would provide adequate data, and enable useful comparisons among other frameworks. For a realistic test 

this system should be benchmarked in the cloud or another suitable distributed environment where Hadoop can benefit 

from concurrent processing. 

V.   CONCLUSIONS 

By removing the need for iterative executions of Map-Reduce we can approach what appear to be similar run-times to 

current systems even in a single processor, non-optimized environment. This fact points to promising results when applied 

in an appropriate setting. The steps outlined in section IV will be performed in order to make conclusive statements. 
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